Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38660564

RESUMO

The quest for extending lifespan and promoting a healthy aging has been a longstanding pursuit in the field of aging research. The control of aging and age-related diseases by nitric oxide (NO) and cGMP signaling is a broadly conserved process from worms to human. Here we show that TOP-N53, a dual-acting NO donor and PDE5 inhibitor, can increase both lifespan and health span in C. elegans .

2.
Front Plant Sci ; 12: 758213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745190

RESUMO

Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by, for example, forming a symbiotic relationship with N-fixing rhizobia and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids that act as signaling molecules perceived by compatible bacteria. Subsequently, bacteria release nod factors, which induce signaling cascades allowing the formation of functional N-fixing nodules. We report here the identification and functional characterization of a plasma membrane-localized MATE-type transporter (LaMATE2) involved in the release of genistein from white lupin roots. The LaMATE2 expression in the root is upregulated under N deficiency as well as low phosphate availability, two nutritional deficiencies that induce the release of this isoflavonoid. LaMATE2 silencing reduced genistein efflux and even more the formation of symbiotic nodules, supporting the crucial role of LaMATE2 in isoflavonoid release and nodulation. Furthermore, silencing of LaMATE2 limited the P-solubilization activity of lupin root exudates. Transport assays in yeast vesicles demonstrated that LaMATE2 acts as a proton-driven isoflavonoid transporter.

3.
Methods Mol Biol ; 2083: 89-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745915

RESUMO

Apocarotenoids are carotenoid derivatives produced by the nonenzymatic or enzymatic cleavage of carotenoids, followed by different enzymatic modifications. In plants, apocarotenoids play different roles, such as attraction of pollinators and seeds dispersal, defense against pathogens and herbivores, protection against photo-oxidative stresses, stimulation and inhibition of plant growth and regulation of biological processes in the case of phytohormones abscisic acid and strigolactones. While carotenoids are in general plastid-localized metabolites, apocarotenoids can reach different final destinations inside or outside the cell. The mechanisms of apocarotenoid transport through biological membranes have been poorly studied. This chapter describes a method to characterize transmembrane transporters involved in the transport of polar and amphipathic apocarotenoids. This protocol was successfully used to in vitro characterize the transport activity of ATP-binding cassette (ABC) and multidrug and toxic extrusion (MATE) in microsomes isolated from Saccharomyces cerevisiae expressing these plant transporters.


Assuntos
Carotenoides/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo , Proteômica , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Eletroporação , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Microssomos/metabolismo , Plantas/genética , Proteômica/métodos , Leveduras/genética , Leveduras/metabolismo
4.
Front Plant Sci ; 10: 1078, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611885

RESUMO

Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.

5.
Plant Cell ; 31(11): 2789-2804, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548254

RESUMO

Compartmentation is a key strategy enacted by plants for the storage of specialized metabolites. The saffron spice owes its red color to crocins, a complex mixture of apocarotenoid glycosides that accumulate in intracellular vacuoles and reach up to 10% of the spice dry weight. We developed a general approach, based on coexpression analysis, heterologous expression in yeast (Saccharomyces cerevisiae), and in vitro transportomic assays using yeast microsomes and total plant metabolite extracts, for the identification of putative vacuolar metabolite transporters, and we used it to identify Crocus sativus transporters mediating vacuolar crocin accumulation in stigmas. Three transporters, belonging to both the multidrug and toxic compound extrusion and ATP binding cassette C (ABCC) families, were coexpressed with crocins and/or with the gene encoding the first dedicated enzyme in the crocin biosynthetic pathway, CsCCD2. Two of these, belonging to the ABCC family, were able to mediate transport of several crocins when expressed in yeast microsomes. CsABCC4a was selectively expressed in C. sativus stigmas, was predominantly tonoplast localized, transported crocins in vitro in a stereospecific and cooperative way, and was able to enhance crocin accumulation when expressed in Nicotiana benthamiana leaves.plantcell;31/11/2789/FX1F1fx1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carotenoides/metabolismo , Crocus/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Vias Biossintéticas , Clonagem Molecular , Crocus/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Cinética , Extratos Vegetais , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Distribuição Tecidual/fisiologia , Nicotiana/genética , Nicotiana/metabolismo
6.
Front Plant Sci ; 10: 422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057565

RESUMO

Plant hormones regulate a myriad of plant processes, from seed germination to reproduction, from complex organ development to microelement uptake. Much has been discovered on the factors regulating the activity of phytohormones, yet there are gaps in knowledge about their metabolism, signaling as well as transport. In this review we analyze the potential of the characterized phytohormonal transporters belonging to the ATP-Binding Cassette family (ABC proteins), thus to identify new candidate orthologs in model plants and species important for human health and food production. Previous attempts with phylogenetic analyses on transporters belonging to the ABC family suggested that sequence homology per se is not a powerful tool for functional characterization. However, we show here that sequence homology might indeed support functional conservation of characterized members of different classes of ABC proteins in several plant species, e.g., in the case of ABC class G transporters of strigolactones and ABC class B transporters of auxinic compounds. Also for the low-affinity, vacuolar abscisic acid (ABA) transporters belonging to the ABCC class we show that localization-, rather than functional-clustering occurs, possibly because of sequence conservation for targeting the tonoplast. The ABC proteins involved in pathogen defense are phylogenetically neighboring despite the different substrate identities, suggesting that sequence conservation might play a role in their activation/induction after pathogen attack. Last but not least, in case of the multiple lipid transporters belong to different ABC classes, we focused on ABC class D proteins, reported to transport/affect the synthesis of hormonal precursors. Based on these results, we propose that phylogenetic approaches followed by transport bioassays and in vivo investigations might accelerate the discovery of new hormonal transport routes and allow the designing of transgenic and genome editing approaches, aimed to improve our knowledge on plant development, plant-microbe symbioses, plant nutrient uptake and plant stress resistance.

7.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753668

RESUMO

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosiltransferases/genética , Fosfatidilinositol 3-Quinases , Proteínas de Arabidopsis/metabolismo , Leucina/biossíntese , Mutação , Organogênese Vegetal , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
8.
Nat Commun ; 10(1): 63, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622247

RESUMO

Maintenance of polymorphism by overdominance (heterozygote advantage) is a fundamental concept in evolutionary biology. In most examples known in nature, overdominance is a result of homozygotes suffering from deleterious effects. Here we show that overdominance maintains a non-deleterious polymorphism with black, red and white floral morphs in the Alpine orchid Gymnadenia rhellicani. Phenotypic, metabolomic and transcriptomic analyses reveal that the morphs differ solely in cyanidin pigments, which are linked to differential expression of an anthocyanidin synthase (ANS) gene. This expression difference is caused by a premature stop codon in an ANS-regulating R2R3-MYB transcription factor, which is heterozygous in the red colour morph. Furthermore, field observations show that bee and fly pollinators have opposite colour preferences; this results in higher fitness (seed set) of the heterozygous morph without deleterious effects in either homozygous morph. Together, these findings demonstrate that genuine overdominance exists in nature.


Assuntos
Orchidaceae/fisiologia , Oxigenases/genética , Pigmentação/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Animais , Antocianinas/metabolismo , Abelhas/fisiologia , Códon sem Sentido , Cor , Dípteros/fisiologia , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Dominantes/genética , Aptidão Genética , Heterozigoto , Orchidaceae/genética , Oxigenases/metabolismo , Polinização , Polimorfismo Genético , Seleção Genética
9.
Plant Cell Physiol ; 59(7): 1326-1336, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452376

RESUMO

The plant vacuole is a cellular compartment that is essential to plant development and growth. Often plant vacuoles accumulate specialized metabolites, also called secondary metabolites, which constitute functionally and chemically diverse compounds that exert in planta many essential functions and improve the plant's fitness. These metabolites provide, for example, chemical defense against herbivorous and pathogens or chemical attractants (color and fragrance) to attract pollinators. The chemical composition of the vacuole is dynamic, and is altered during development and as a response to environmental changes. To some extent these alterations rely on vacuolar transporters, which import and export compounds into and out of the vacuole, respectively. During the past decade, significant progress was made in the identification and functional characterization of the transporters implicated in many aspects of plant specialized metabolism. Still, deciphering the molecular players underlying such processes remains a challenge for the future. In this review, we present a comprehensive summary of the most recent achievements in this field.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Vacúolos/metabolismo , Alcaloides/metabolismo , Transporte Biológico , Flavonoides/metabolismo , Glucosinolatos/metabolismo , Glicosídeos/metabolismo , Filogenia , Células Vegetais/metabolismo , Plantas/genética , Saponinas/metabolismo , Sorghum/metabolismo
10.
New Phytol ; 217(2): 784-798, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083039

RESUMO

Strigolactones (SLs) are carotenoid-derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG-class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X-ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time-lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate-poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL-dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate-poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.


Assuntos
Biomassa , Lactonas/metabolismo , Fosfatos/deficiência , Solo/química , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genótipo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Modelos Biológicos , Micorrizas/fisiologia , Petunia/genética , Petunia/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regulação para Cima
11.
Front Plant Sci ; 7: 845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446099

RESUMO

To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...